NITROGEN BRIDGEHEAD COMPOUNDS. PART 60¹. UNUSUAL AMINATION WITH SODIUM AZIDE.

István Bitter^{al}, Gábor Tóth^{a2}, Áron Szöllősy^{a2}, István Hermecz^b, and Zoltán Mészáros^b

al Technical University, Department of Organic Chemistry and Technology, H-1111 Budapest, Hungary

a2 NMR Laboratory of the Institute of General and Analytical Chemistry, b CHINOIN Pharm. and Chem. Works, H-1325 Budapest, P.O. Box 110, Hungary.

<u>Summary:</u> 9-Bromo-6,7,8,9-tetrahydro-4<u>H</u>-pyrido [1,2-<u>a</u>]pyrimidin-4-ones react with sodium azide to afford 9-amino-6,7-dihydroanalogues. A mechanism involving a tricyclic tetrazine intermediate formed by neighbouring-group participation is suggested.

In our earlier publications we have described some interesting nucleophilic substitutions of 9-bromo-6.7.8.9-tetrahydro-4<u>H</u>-pyrido[1.2-<u>a</u>]pyrimidin-4-ones¹⁻⁴. Simple anions (I⁻, CN⁻, OAc, RS⁻, SCN⁻) behaved as usual^{1,4}, but azide ion gave an unexpected result. If compounds <u>l</u>a,b were allowed to react in acetone with an equimolar amount of sodium azide at 25 ^oC soon gas evolution occured and the mixture assumed a purple colour. The major component of the reaction could be isolated by filtering the precipitated product (<u>2</u>a,b) and its structure was identified by IR and NMR spectra.

2a M.p.: 162-163 ^OC (EtOH); Yield 42% 2b M.p.: 180-182 ^OC (EtOH); Yield 55% a, R = CONH₂; b, R = CN

The IR spectra of compounds 2a,b revealed the lack of the N_3 band and the appearance of a NH_2 band, while the ¹H and ¹³C NMR spectra indicated the presence of a double bond between C-8 and C-9 atoms.

To explain the reaction pathway we first assumed an azide intermediate $(\underline{3})$ transformed into a nitrene by the loss of nitrogen. (It is worth noting that no record in the literature is available on such a facile thermal decomposition of azides). The nitrene intermediate could be stabilized by intramolecular H-9 insertion affording the imine tautomer of $\underline{2}$ ($\underline{2}$ ').

¹ H NMR Chemical shifts					Jeol FX-100				$\delta(TMS) = 0 ppm$		
Comp.	H - 2	H - 6	H-7 _{ec}	H-	7 _{ax}	H - 8	6-Me	NH2	Solvent		
<u>2</u> a	8.83s	5.22m	2.38dd	id 2.8	6ddd	5.68dd	1.38d		CDCl ₃ +	CD30D	
2 _J 7,7	7 ^{=18.0} ;	³ J _{7eq} ,8	₃ =7.0; ³	5 <u>−</u> 6,7eq	=1.5;	³ _J 6,7ах	=7.0; 3	-7ax,8 ⁼³	.0; ⁴ J _{6,8}	=1.4Hz	
<u>2</u> b	8.28s	5 . 18m	2.32da	ld 2.8	2ddd	5.5lm	1.37d	3.95br	CDC13		
² J _{7,7}	7=18.0;	³ J_7eq,8	₃ =7.1; ³	<u>_</u> 6,7eq	=1.1;	³ _] _6,7ах	=7.1; 3		.2; ⁴ <u>J</u> _{6,8}	=1.3Hz	
13 _{C NN}	MR Chem:	ical shi	ifts	Jeo	1 FX-1	100	CDC13	$CDCl_3 \qquad \delta(TMS) = O ppm$			
Comp.	C-2	C-3	C-4	C - 6	C-7	C-8	C-9	C-9	a 6-Me	3-CN	
<u>2</u> b	159.0	101.6	157.7	46.0	26.9	105.9	133.	8 153.	5 17 .7	113.9	

Trapping of $\underline{3}b$ with 1,3-dipolarophiles e.g. ethyl propiolate, phenylacetylene failed and although phenyl isocyanate gave a new compound $(\underline{4})^5$, this was formed by the acylation of $\underline{2}b$.

Another, perhaps more reasonable route can give acceptable explanation for the easy decomposition of 2 without assuming the existence of nitrene intermediate. We suggest the cyclization of the 9-azido group with C-9a and N-1 double bond forming the ring tautomer, a dihydro-1,2,3,4-tetrazine (5), which is unstable and loses nitrogen to give 2'. As to the 2'=2 equilibrium it is entirely shifted to the enamine form (2) as we have earlier observed with the similar 9-arylamino-6,7-dihydro-4<u>H</u>-pyrido [1,2-<u>a</u>]pyrimidin-4-ones⁶.

REFERENCES and NOTES: 1. I. Bitter, B. Pete, G. Tóth, I. Hermecz, and Z. Mészáros, submitted for publication to <u>Heterocycles.</u> 2. I. Hermecz <u>et.al</u>, <u>J</u>. <u>Med. Chem.</u> 1983, <u>26</u>, 1494. 3. T. Breining, I. Hermecz, B. Podányi, Z. Mészáros, and G. Tóth, <u>J. Chem. Soc.</u>, <u>Perkin Trans.</u> 1, 1985, 1015. 4. I. Bitter, B. Pete, G. Tóth, I. Hermecz, and Z. Mészáros: <u>Heterocycles</u> in press. 5. Compound <u>4</u> is prepared by combining equimolar amounts of <u>1</u>b, NaN₃ and PhNCO in dry acetone at 25 °C. Yield 45%. M.p.: 118-120 °C (EtOH). ¹H NMR (CDCl₃) Me 1.27d; EtO 1.32t, 4.32q; CH₂-7 2.3-3.0m; H-8 5.74dd (J=7.5 and 3.0Hz) H-6 5.20m; Ph 7.0-7.5m; NH 7.89s, and 8.29s; H-2 8.48s. 6. T. Breining, I. Hermecz, B. Podányi, and J. Sessi, <u>J. Heterocyclic Chem</u>. in press. (Received in UK 3 June 1985)